edfas.org ELECTRONIC DEVICE FAILURE ANALYSIS | VOLUME 26 NO. 4 10 methods to aid reconstruction parameter selection to ensure a specific algorithm is being used optimally.[55] SUMMARY This three-part series on 4D-STEM touched upon different imaging modalities, dimensional metrology, defect characterization, strain, electromagnetic field measurement and more. The intent was to convey the potential of 4D-STEM as an indispensable tool for materials characterization and highlight some applications that would benefit the electronic device characterization community. Keep in mind that 4D-STEM has not yet reached maturity, and the scope and accessibility of the techniques are still increasing. The authors expect adoption of 4D-STEM methods to grow and increasingly address scientific problems inaccessible to other techniques. REFERENCES 1. W. Hoppe: “Beugung Im Inhomogenen Primarstrahlwellen- feld. I. Prinzip Einer Phasenmessung von Elektronenbeungungsinterferenzen,” Acta Crystallographica Section A, 1969, 25(4), p. 495-501. 2. R. Hegerl and W. Hoppe: “Dynamische Theorie Der Kristallstrukturanalyse Durch Elektronenbeugung im Inhomogenen Primärstrahlwellenfeld,” Berichte der Bunsengesellschaft für physikalische Chemie, 1970, 74(11), p. 1148-1154. 3. T.B. Edo, et al.: “Sampling in X-Ray Ptychography,” Physical Review A, 2013, 87(5), p. 053850. 4. C. Gilgenbach, X. Chen, and J.M. LeBeau: “A Methodology for Robust Multislice Ptychography,” Microscopy and Microanalysis, 2024, 30(4), p. 703-711. 5. J.M. Rodenburg: “Ptychography and Related Diffractive Imaging Methods,” Advances in Imaging and Electron Physics, 2008, 150, p. 87-184. 6. J. Rodenburg and A. Maiden: “Ptychography,” Springer Handbook of Microscopy, 2019, p. 819-904. 7. J.M. Rodenburg and H.M.L. Faulkner: “A Phase Retrieval Algorithm for Shifting Illumination,” Applied Physics Letters, 2004, 85(20), p. 4795-4797. 8. A.M. Maiden and J.M. Rodenburg: “An Improved Ptychographical Phase Retrieval Algorithm for Diffractive Imaging,” Ultramicroscopy, 2009, 109(10), p. 1256-1262. 9. J.M. Rodenburg and R.H.T. Bates: “The Theory of Super-Resolution Electron Microscopy via Wigner-Distribution Deconvolution,” Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 1992, 339(1655), p. 521-553. 10. C.T. Putkunz, et al.: “Atom-Scale Ptychographic Electron Diffractive Imaging of Boron Nitride Cones,” Physical Review Letters, 2012, 108(7), p. 073901. 11. T.J. Pennycook, et al.: “Efficient Phase Contrast Imaging in STEM using a Pixelated Detector. Part 1: Experimental Demonstration at Atomic Resolution,” Ultramicroscopy, 2015, 151, p. 160-167. 12. A.M. Maiden, M.J. Humphry, and J.M. Rodenburg: “Ptychographic Transmission Microscopy in Three Dimensions using a Multi-Slice Approach,” J. Opt. Soc. Am. A, 2012, 29(8), p. 1606-1614. 13. Z. Chen, et al.: “Mixed-State Electron Ptychography Enables SubAngstrom Resolution Imaging with Picometer Precision at Low Dose,” Nature Communications, 2020, 11(1), p. 2994. 14. P.D. Nellist and S.J. Pennycook: “Incoherent Imaging using Dynamically Scattered Coherent Electrons,” Ultramicroscopy, 1999, 78(1), p. 111-124. 15. P. Wang, et al.: “Electron Ptychographic Diffractive Imaging of Boron Atoms in LaB6 Crystals,” Scientific Reports, 2017, 7(1), p. 2857. 16. H. Yang, et al.: “Electron Ptychographic Phase Imaging of Light Elements in Crystalline Materials using Wigner Distribution De- convolution,” Ultramicroscopy, 2017, 180, p. 173-179. 17. J.G. Lozano, et al.: “Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge using Electron Ptychography,” Nano Letters, 2018, 18(11), p. 6850-6855. 18. W. Song, et al.: “Direct Imaging of Oxygen Shifts Associated with the Oxygen Redox of Li-Rich Layered Oxides,” Joule, 2022, 6(5), p. 1049-1065. 19. Z. Chen, et al.: “Electron Ptychography Achieves Atomic-Resolution Limits Set by Lattice Vibrations,” Science, 2021, 372(6544), p. 826-831. 20. T. Seki, Y. Ikuhara, and N. Shibata: “Theoretical Framework of Statistical Noise in Scanning Transmission Electron Microscopy,” Ultramicroscopy, 2018, 193, p. 118-125. 21. Y. Jiang, et al.: “Electron Ptychography of 2D Materials to Deep SubÅngström Resolution,” Nature, 2018, 559(7714), p. 343-349. 22. T.J. Pennycook, et al.: “High Dose Efficiency Atomic Resolution Imaging via Electron Ptychography,” Ultramicroscopy, 2019, 196, p. 131-135. 23. H. Zhang, et al.: “Three-Dimensional Inhomogeneity of Zeolite Structure and Composition Revealed by Electron Ptychography,” Science, 2023, 380(6645), p. 633-638. 24. A. Scheid, et al.: “Electron Ptychographic Phase Imaging of BeamSensitive All-Inorganic Halide Perovskites using Four-Dimensional Scanning Transmission Electron Microscopy,” Microscopy and Microanalysis, 2023, 29(3), p. 869-878. 25. B. Hao, et al.: “Atomic-Scale Imaging of Polyvinyl Alcohol Crystallinity using Electron Ptychography,” Polymer, 2023, 284, p. 126305. 26. L. Zhou, et al., “Low-Dose Phase Retrieval of Biological Specimens using Cryo-Electron Ptychography,” Nature Communications, 2020, 11(1), p. 2773. 27. C. Hofer, et al.: “Detecting Charge Transfer at Defects in 2D Materials with Electron Ptychography,” doi.org/10.48550/arXiv.2301.04469. 28. J. Cui, et al.: “Antiferromagnetic Imaging Via Ptychographic Phase Retrieval,” Science Bulletin, 2023, doi.org/10.1016/j.scib.2023. 12.044. 29. Z. Chen, et al.: “Lorentz Electron Ptychography for Imaging Magnetic Textures Beyond the Diffraction Limit,” Nature Nanotechnology, 2022, 17(11), p. 1165-1170. 30. M. Weyland and D. A. Muller: “Tuning the Convergence Angle for Optimum STEM Performance,” FEI Nanosolutions, 2005, 1(24), p. 24-35. 31. Y. Peng, et al.: “Spatial Resolution and Information Transfer in Scanning Transmission Electron Microscopy,” Microscopy and Microanalysis, 2008, 14(1), p. 36-47. 32. E.M. James and N.D. Browning: “Practical Aspects of Atomic Resolution Imaging and Analysis in STEM,” Ultramicroscopy, 1999, 78(1), p. 125-139. 33. H. Ichinose, et al.: “Atomic Resolution HVEM and Environmental Noise,” Journal of Electron Microscopy, 1999, 48(6), p. 887-891. 34. P.D. Nellist, B.C. McCallum, and J.M. Rodenburg: “Resolution Beyond the ‘Information Limit’ in Transmission Electron Microscopy,” Nature, 1995, 374(6523), p. 630-632. 35. S. Morishita, et al.: “Attainment of 40.5 pm Spatial Resolution using 300 kV Scanning Transmission Electron Microscope Equipped with Fifth-Order Aberration Corrector,” Microscopy, 2017, 67(1), p. 46-50. 36. A. Suzuki, et al.: “High-Resolution Multislice X-Ray Ptychography of Extended Thick Objects,” Physical Review Letters, 2014, 112(5), p. 053903.
RkJQdWJsaXNoZXIy MTYyMzk3NQ==