edfas.org ELECTRONIC DEVICE FAILURE ANALYSIS | VOLUME 26 NO. 1 12 5. E.F. Rauch, et al.: “Automated Nanocrystal Orientation and Phase Mapping in the Transmission Electron Microscope on the Basis of Precession Electron Diffraction,” Zeitschrift für Kristallographie, 2010, 225(2-3), p. 103-109. 6. B.H. Savitzky, et al.: “Py4DSTEM: A Software Package for FourDimensional Scanning Transmission Electron Microscopy Data Analysis,” Microscopy and Microanalysis, 2021, 27(4), p. 712-743. 7. Pyxem/Kikuchipy: Kikuchipy 0.8.6., 2023. 8. X. Hong, et al.: “Multibeam Electron Diffraction,” Microscopy and Microanalysis, 2021, 27(1), p. 129-139. 9. E.F. Rauch and M. Véron: “Automated Crystal Orientation and Phase Mapping in TEM,” Materials Characterization, 2014, 98, p. 1-9. 10. A. Morawiec, et al.: “Orientation Precision of TEM-Based Orientation Mapping Techniques,” Ultramicroscopy, 2014, 136, p. 107-118. 11. J. Jeong, et al.: “Automated Crystal Orientation Mapping by Precession Electron Diffraction-Assisted Four-Dimensional Scanning Transmission Electron Microscopy using a Scintillator-Based CMOS Detector,” Microscopy and Microanalysis, 2021, 27(5), p. 1102-1112. 12. R. Yuan, et al.: “Training Artificial Neural Networks for Precision Orientation and Strain Mapping Using 4D Electron Diffraction Datasets,” Ultramicroscopy, 2021, 231, p. 113256. 13. L. Henry, et al.: “Studying Phase Change Memory Devices by Coupling Scanning Precession Electron Diffraction and Energy Dispersive X-ray Analysis,” Acta Materialia, 2020, 201, p. 72-78. 14. J.C. daSilva, et al.: “Mechanistic Insights into Superlattice Transformation at a Single Nanocrystal Level using Nanobeam Electron Diffraction,” Nano Letters, 2020, 20(7), p. 5267-5274. 15. A. Londoño-Calderon, et al.: “Intrinsic Helical Twist and Chirality in Ultrathin Tellurium Nanowires,” Nanoscale, 2021, 13(21), p. 9606-9614. 16. O. Panova, et al.: “Orientation Mapping of Semicrystalline Polymers using Scanning Electron Nanobeam Diffraction,” Micron, 2016, 88, p. 30-36. 17. O. Panova, et al.: “Diffraction Imaging of Nanocrystalline Structures in Organic Semiconductor Molecular Thin Films,” Nature Materials, 2019, 18(8), p. 860-865. 18. M. Wu, et al.: “Seeing Structural Evolution of Organic Molecular Nano-Crystallites using 4D Scanning Confocal Electron Diffraction (4D-SCED),” Nature Communications, 2022, 13(1), p. 2911. 19. M. Nord, et al.: “Three-Dimensional Subnanoscale Imaging of Unit Cell Doubling Due to Octahedral Tilting and Cation Modulation in Strained Perovskite Thin Films,” Physical Review Materials, 2019, 3(6), p. 063605. 20. O.L. Krivanek, P.H. Gaskell, and A. Howie: “Seeing Order in ‘Amorphous’ Materials,” Nature, 1976, 262(5568), p. 454-457. 21. E. Takeshi and S.J.L. Billinge: “Chapter 3 - the Method of Total Scattering and Atomic Pair Distribution Function Analysis,” in Pergamon Materials Series, Vol. 16, T. Egami and S. J. L. Billinge Eds.: Pergamon, 2012, p. 55-111. 22. D.J.H. Cockayne and D.R. McKenzie: “Electron Diffraction Analysis of Polycrystalline and Amorphous Thin Films,” Acta Crystallographica Section A, 1988, 44(6), p. 870-878. 23. X. Mu, et al.: “Radial Distribution Function Imaging by STEM Diffraction: Phase Mapping and Analysis of Heterogeneous Nanostructured Glasses,” Ultramicroscopy, 2016, 168, p. 1-6. 24. Y. Rakita, et al.: “Mapping Structural Heterogeneity at the Nanoscale with Scanning Nano-Structure Electron Microscopy (SNEM),” Acta Materialia, 2023, 242, p. 118426. 25. X. Mu, et al.: “Mapping Structure and Morphology of Amorphous Organic Thin Films by 4D-STEM Pair Distribution Function Analysis,” Microscopy, 2019, 68(4), p. 301-309. 26. J.E.M. Laulainen, et al.: “Mapping Short-Range Order at the Nanoscale in Metal-Organic Framework and Inorganic Glass Composites,” Nanoscale, 2022, 14(44), p. 16524-16535. 27. X. Mu, et al.: “Unveiling Local Atomic Bonding and Packing of Amorphous Nanophases Via Independent Component Analysis Facilitated Pair Distribution Function,” Acta Materialia, 2021, 212, p. 116932. 28. M.M.J. Treacy: “Fluctuation Microscopy: A Probe of Medium Range Order,” Reports on Progress in Physics, 2005, 68(12), p. 2899. 29. M.M.J. Treacy: “Speckles in Images and Diffraction Patterns,” Handbook of Nanoscopy, 2012, p. 405-435. 30. D. Radić, et al.: “Fluctuation Electron Microscopy on Amorphous Silicon and Amorphous Germanium,” Microscopy and Microanalysis, 2023, 29(2), p. 477-489. 31. T.T. Li, K. Darmawikarta, and J.R. Abelson: “Quantifying Nanoscale Order in Amorphous Materials Via Scattering Covariance in Fluctuation Electron Microscopy,” Ultramicroscopy, 2013, 133, p. 95-100. 32. M.J. Hart, et al.: “Medium Range Structural Order in Amorphous Tantala Spatially Resolved with Changes to Atomic Structure by Thermal Annealing,” Journal of Non-Crystalline Solids, 2016, 438, p. 10-17. 33. M. Abbasi, et al.: “In Situ Observation of Medium Range Ordering and Crystallization of Amorphous TiO2 Ultrathin Films Grown by Atomic Layer Deposition,” APL Materials, 2023, 11(1). 34. J. Hwang and P.M. Voyles: “Variable Resolution Fluctuation Electron Microscopy on Cu-Zr Metallic Glass using a Wide Range of Coherent STEM Probe Size,” Microscopy and Microanalysis, 2011, 17(1), p. 67-74. 35. P.M. Voyles, et al.: “Absence of an Abrupt Phase Change from Polycrystalline to Amorphous in Silicon with Deposition Temperature,” Physical Review Letters, 2001, 86(24), p. 5514-5517. 36. H.C. Jacks, et al.: “Structural Tunability and Origin of Two-Level Systems in Amorphous Silicon,” Physical Review Materials, 2022, 6(4), p. 045604. 37. M.M.J. Treacy and K.B. Borisenko: “The Local Structure of Amorphous Silicon,” Science, 2012, 335(6071), p. 950-953. 38. J.M. Gibson and M.M.J. Treacy: “Fluctuation Microscopy Analysis of Amorphous Silicon Models,” Ultramicroscopy, 2017, 176, p. 74-79. 39. A.C.Y. Liu, et al.: “Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun Zr36Cu64 Metallic Glass,” Physical Review Letters, 2013, 110(20), p. 205505. 40. S. Huang, et al.: “Correlation Symmetry Analysis of Electron Nanodiffraction from Amorphous Materials,” Ultramicroscopy, 2022, 232, p. 113405. 41. S. Huang, et al.: “Large Area, High Resolution Mapping of Approximate Rotational Symmetries in a Pd77.5Cu6Si16.5 Metallic Glass Thin Film,” Ultramicroscopy, 2022, 241, p. 113612. 42. J.N. Chapman: “The Investigation of Magnetic Domain Structures in Thin Foils by Electron Microscopy,” Journal of Physics D: Applied Physics, 1984, 17(4), p. 623. 43. H. Rose: “Phase Contrast in Scanning Transmission Electron Microscopy” Optik, 1974, 39(4), p. 416-436. 44. N.H. Dekkers and H. de Lang: “Differential Phase Contrast in a STEM,” Optik, 1974, 41(4), p. 452-456. 45. J.N. Chapman, et al.: “The Direct Determination of Magnetic Domain Wall Profiles by Differential Phase Contrast Electron Microscopy,” Ultramicroscopy, 1978, 3, p. 203-214. 46. E.M. Waddell and J.N. Chapman: “Linear Imaging of Strong Phase Objects Using Asymmetrical Detectors in STEM,” Optik, 1979, 54, p. 83-96. 47. L. Wu, M.-G. Han, and Y. Zhu: “Toward Accurate Measurement of Electromagnetic Field by Retrieving and Refining the Center Position of Non-Uniform Diffraction Disks in Lorentz 4D-STEM,” Ultramicroscopy, 2023, 250, p. 113745. 48. M. Krajnak, et al.: “Pixelated Detectors and Improved Efficiency for Magnetic Imaging in STEM Differential Phase Contrast,” Ultramicroscopy, 2016, 165, p. 42-50.
RkJQdWJsaXNoZXIy MTYyMzk3NQ==