AMP 03 April 2024

ADVANCED MATERIALS & PROCESSES | APRIL 2024 27 International Publishing, link.springer. com/book/10.1007/978-3-030-56127-7. 10. M.S. Saleh, et al., Additive Manufacturing, 23, p 70–78, 2018, www. sciencedirect.com/science/article/pii/ S2214860418302379. 11. A.C. Martinez, et al., J. Phys. Energy, 2023, iopscience.iop.org/article/ 10.1088/2515-7655/acf958/meta. 12. E. MacDonald and R. Wicker, Science, 353, 2016, dx.doi.org/10.1126/ science.aaf2093. 13. M. Khorasani, et al., Rapid Prototyping Journal, 28, p 87–100, 2021, doi.org/10.1108/RPJ-01-2021-0009. 14. V. Boudeville, et al., J. Power Sources, 593, p 233973, 2024, www.science direct.com/science/article/pii/S0378775323013496. 15. A. Maurel, et al., J. Electrochem. Soc., 167, p 070536, 2020, dx.doi. 3. Y. Liu, et al., iScience, 24, p 102332, 2021, dx.doi.org/10.1016/j.isci.2021. 102332. 4. J.-M. Tarascon and M. Armand, Nature, 414, p 359–367, 2001, dx.doi. org/10.1038/35104644. 5. C. Reyes, et al., ACS Applied Energy Materials, 1, p 5268–5279, 2018, doi. org/10.1021/acsaem.8b00885. 6. A. Maurel, et al., Virtual Phys. Prototyp., 18, p e2264281, 2023, doi.org /10.1080/17452759.2023.2264281. 7. A. Maurel, et al., Additive Manufacturing, 37, p 101651, 2021, www.sciencedirect.com/science/article/ pii/S221486042031023X. 8. B. Trembacki, et al., J. Electrochem. Soc., 166, p A923–A934, 2019, dx.doi. org/10.1149/2.0031906jes. 9. I. Gibson, et al., Additive Manufacturing Technologies, p 23, Springer org/10.1149/1945-7111/ab7c38. 16. A. Maurel, et al., Chem. Mater., 30, p 7484–7493, 2018, dx.doi.org/10.1021/ acs.chemmater.8b02062. 17. A.C. Martinez, et al., J. Power Sources, 468, 2020, dx.doi.org/10.1016/ j.jpowsour.2020.228204. 18. R. Jung, et al., J. Electrochem. Soc., 165, p A132, 2018, iopscience.iop.org/ article/10.1149/2.0401802jes/meta. 19. A. Maurel, et al., J. Electrochem. Soc., 170, p 100538, 2023, iopscience. iop.org/article/10.1149/1945-7111/ ad0420/meta. 20. J.F. Valera-Jiménez, et al., Applied Materials Today, 25, p 101243, 2021, www.sciencedirect.com/science/ article/pii/S2352940721003061. Nitinol for Medical Devices April 15–17 & October 21–23 | 2.0 CEUs ASM Headquarters & Virtual Classroom The unique properties of the shape memory alloy, Nitinol, have led to many transformational medical device innovations including self-expanding stents, percutaneous delivered heart valves, kink-resistant guide wires, and self-locking orthopedic devices. Its superelastic qualities allow the alloy to withstand large amounts of recoverable strain, and its potential for excellent biocompatibility and fatigue resistance make it the material of choice for some of the most demanding medical device applications. Education asminternational.org/education-overview Upon completion of this course, students can successfully: • Identify the reasons for Nitinol’s unique properties • Describe how Nitinol performs in a variety of conditions • Describe basic Nitinol device manufacturing principles • Recognize how to apply the benefits of Nitinol’s properties to real world applications Register for the April or October course today!

RkJQdWJsaXNoZXIy MTYyMzk3NQ==