AMP 06 September 2023

16 ADVANCED MATERIALS & PROCESSES | SEPTEMBER 2023 For more information: Brenda L. Garcia-Diaz, advisory program manager for fusion energy, Savannah River National Laboratory, Aiken, SC 29808, 803.507.8530, brenda.garcia-diaz@srnl. doe.gov. References 1. National Academies of Sciences, and Medicine, Bringing Fusion to the U.S. Grid, 2021, Washington, DC: The National Academies Press. 2. D. Chandler, MIT-designed Project Achieves Major Advance Toward Fusion Energy, MIT News, 2021. 3. A.J. Creely, et al., Overview of the SPARC Tokamak, Journal of Plasma Physics, 86(5), p 865860502, 2020. 4. Report of the Fusion Energy Sciences Workshop on Inertial Fusion Energy, 2023. 5. S.C. Hsu, U.S. Fusion Energy Development via Public-Private Partner- ships, Journal of Fusion Energy, 42(1), p 12, 2023. 6. L. Tan, et al., Recent Status and Improvement of Reduced-activation Ferritic-martensitic Steels for Hightemperature Service, Journal of Nuclear Materials, 479, p 515-523, 2016. 7. J. Knaster, A. Moeslang, and T. Muroga, Materials Research for Fusion, Nature Physics, 12(5), p 424-434, 2016. 8. A. Litnovsky, et al., Fusion—Reactor Materials, in Encyclopedia of Nuclear Energy, E. Greenspan, editor, Elsevier: Oxford. p 594-619, 2021. 9. S.J. Zinkle, Fusion Materials Science: Overview of Challenges and Recent Progress, Physics of Plasmas 12(5), 2005. 10. S.J. Zinkle and A. Quadling, Extreme Materials Environment of the Fusion ‘Fireplace,’ MRS Bulletin, 47, p 1113-1119, 2022. 11. Indirect Drive, I.C.F.C., et al., Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment, Physical Review Letters, 129(7), p 075001, 2022. 12. A.B. Zylstra, et al., Burning Plasma Achieved in Inertial Fusion, Nature, 601(7894), p 542-548, 2022. 13. National Ignition Facility Earns Its Name for a Second Time, Physics Today, Aug. 11, 2023, https://pubs.aip.org/ physicstoday/online/42581/NationalIgnition-Facility-earns-its-name-for-a. 14. N.M. Ghoniem, and G.L. Kulcinski, A Critical Assessment of the Effects of Pulsed Irradiation on the Microstructure, Swelling, and Creep of Materials, Nuclear Technology-Fusion, 2(2), p 165-198, 1982. 15. S.E. Wurzel and S.C. Hsu, Progress Toward Fusion Energy Breakeven and Gain as Measured Against the Lawson Criterion, Physics of Plasmas, 29(6), 2022. 16. J. Li, et al., Continuous and Scalable Polymer Capsule Processing for Inertial Fusion Energy Target Shell Fabrication using Droplet Microfluidics, Scientific Reports, 7(1), p 6302, 2017. 17. D.T. Goodin, et al., Cost-effective Target Fabrication for Inertial Fusion Energy, in Conference: 3rd International Conference on Inertial Fusion Sciences and Applications, Monterey, Calif., September 7-12, 2003 and to be published in Fusion Science and Technology, United States, 2004. 18. D.T. Goodin, et al., Progress Towards Demonstrating IFE Target Fabrication and Injection, General Atomics, 2002. 19. W. Theobald, et al., Initial Conein-shell Fast-ignition Experiments on OMEGA, Physics of Plasmas, 18(5), 2011. 20. R. Dezulian, et al., Equations of State Data of Plastic Foams Obtained from Laser Driven Shocks at PALS (Prague Asterix Laser System), AIP Conference Proceedings, 827(1), p 376381, 2006. 21. L. Li, et al., Deuteration and Polymers: Rich History with Great Potential, Macromolecules, 54(8), p 3555- 3584, 2021. 22. J. Atzrodt, et al., C−H Functionalisation for Hydrogen Isotope Exchange, Angewandte Chemie International Edition, 57(12), p 3022-3047, 2018. 23. N.J. Broadway and S. Palinchak, The Effect of Nuclear Radiation on Fluoropolymers, 1959: United States, 20 pages. 24. E.B. Fox, M.D. Kranjc, and T.E. Skidmore, Polymer Performance and Aging in a Tritium Environment, Fusion Science and Technology, 71(4), p 507513, 2017. 25. D. Hitchcock, et al., Tritium Effects on Aromatic Carbon–Loaded Polymers, 76, 2020. 26. T. Ratto, A.P. Saab, LLNL-TR-413497, United States, May 2009. 27. M.P. Kroonblawd, N. Goldman, and J.P. Lewicki, J Phys Chem B, 122(50), p 12201-12210, Dec. 20, 2018. 28. Maxwell, et al., Radiation-induced Cross-linking in a Silica-filled Silicone Elastomer as Investigated by Multiple Quantum 1H NMR, Macromolecules, 38(16), p 7026–7032, 2005. 29. M. Stadermann, et al., Radiation Tolerance of Ultra-thin Formvar Films, Appl. Phys. Lett., 101(7) p 071908, Aug. 13, 2012. 30. W.H. Gourdin, et al., Effect of Gamma and Neutron Irradiation on the Mechanical Properties of SpectralongTM Porous PTFE, Fusion Engineering and Design, 112, p 343-348, 2016. 31. M. Karasik, et al., Suppression of Laser Nonuniformity Imprinting using a Thin High-Z Coating, Phys. Rev. Lett., 114, p 085001, 2015. 32. T. Braun, et al., Tungsten Doped Diamond Shells for Record Neutron Yield Inertial Confinement Fusion Experiments at the National Ignition Facility, Nucl. Fusion, 63, p 016022, 2023. 33. A.A. Solodov, et al., Hot-electron Preheat and Mitigation in Polar-directdrive Experiments at the National Ignition Facility, Phys. Rev. E, 106, p 055204, 2022. 34. L. Berzak Hopkins, et al., Increasing Stagnation Pressure of Thermonuclear Performance of Inertial Confinement Fusion Capsules by the Introduction of a High-Z Dopant, Physics of Plasmas, 25, p 080706, 2018. 35. M. Tabak, Review of Progress in Fast Ignition, Physics of Plasmas, 12, p 057305, 2005. 36. R.D. Olsen, A Polar Direct Drive Liquid Deuterium-tritium wetted foam Target Concept for Inertial Confinement Fusion, Physics of Plasmas, 28, 122704, 2021.

RkJQdWJsaXNoZXIy MTYyMzk3NQ==