January-February_2023_AMP_Digital

2 0 A D V A N C E D M A T E R I A L S & P R O C E S S E S | J A N U A R Y / F E B R U A R Y 2 0 2 3 Fabricated by Additive Friction Stir Deposition, J. Mater. Process. Technol., Vol. 295, p 117169, Sep. 2021, doi: 10.1016/j.jmatprotec.2021.117169. 17. C.J.T. Mason, et al., Processstructure-property Relations for As- deposited Solid-state Additively Manufactured High-strength Aluminum Alloy, Addit. Manuf., Vol. 40, No. February, p 101879, Apr. 2021, doi: 10.1016/j. addma.2021.101879. 18. D.Z. Avery et al., Fatigue Behavior of Solid-State Additive Manufactured Inconel 625, JOM, 70(11), p 2475–2484, Nov. 2018, doi: 10.1007/ s11837-018-3114-7. 19. C.J.T. Mason, et al., Strain Rate Dependent Plasticity Model for Precipitate Hardened Aerospace Aluminum Alloy ProducedwithSolid-State Additive Manufacturing, J. Dyn. Behav. Mater., 8(2), p 214–230, 2022, doi: 10.1007/ s40870-021-00325-4. 20. D.Z. Avery, et al., Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy, Metall. Mater. Trans. A, Apr. 2020, doi: 10.1007/s11661-020-05746-9. 21. S.C. Beck, et al., The Effect of Solutionizing and Artificial Aging on the Microstructure and Mechanical Properties in Solid-state Additive Manufacturing of Precipitation Hardened Al–Mg–Si Alloy, Mater. Sci. Eng. A, Vol. 819, p 141351, May 2021, doi: 10.1016/j.msea.2021.141351. 22. C.J.T. Mason, et al., Microstructure and Mechanical Properties of Solid-State Additively Manufactured Aluminum Alloy 7050 Aerospace Components. 23. N. Zhu, et al., Residual Stress Distributions in AA6061 Material Produced by Additive Friction Stir Deposition, J. Mater. Eng. Perform., 31(1), doi: In review. 24. B.J. Phillips, et al., Microstructuredeformation Relationship of Additive Friction Stir-deposition Al–Mg–Si, Materialia, Vol. 7, p 100387, Sep. 2019, doi: 10.1016/j.mtla.2019.100387. 25. S.A. Whalen, et al., High Ductility Aluminum Alloy made from Powder by Friction Extrusion, Materialia, Vol. 6, No. December 2018, 2019, doi: 10.1016/j.mtla.2019.100260. 26. T.W. Rushing and I.L. Howard, Prediction of Soil Deformation Beneath Temporary Airfield Matting Systems based on Full-scale Testing, J. Terramechanics, Vol. 58, p 1–9, Apr. 2015, doi: 10.1016/j.jterra.2014.12.004. 27. K. Peacock, RyukyuWarriors Repair Sole LHD Deck in Pacific, DVIDS, 2011. 28. L. Garcia, et al., AM2 Brickwork Pattern Evaluation, ERDC/GSL TR-1634, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2016. 29. G. Dodson, NASA Sets Coverage for Artemis I Moon Mission Launch, NASA Press Release, 2022, [Online]. Available: https://www.nasa.gov/press-release/ nasa-sets-coverage- for-artemis- i - moon-mission-launch. 30. J. Chu, Space Junk: The Cluttered Frontier, MIT News, 2017, [Online] Available: https://news.mit.edu/2017/ space-junk-shards-teflon-0619. 31. J.J. Lopez, et al., A Solid-state Additive Manufacturing Method for Aluminum-graphene Nanoplatelet Composites, Materialia, Vol. 23, p 101440, Jun. 2022, doi: 10.1016/j. mtla.2022.101440. 32. J.J. Lopez, et al., Local Resource Utilization of Lunar Regolith for Manufacturing at the Point-of-Need of Metal Matrix Composites, presented at the Earth and Space Conference, In Review, 2022. Are you maximizing your ASM membership? Expand your knowledge and apply your ASM International member-only discounts to a variety of professional development resources: • Reference Materials • ASM Handbooks Online • Technical Journals • Continuing Education Courses Learn more about your membership benefits by visiting: asminternational.org/membership

RkJQdWJsaXNoZXIy MTYyMzk3NQ==