1 9 A D V A N C E D M A T E R I A L S & P R O C E S S E S | J A N U A R Y / F E B R U A R Y 2 0 2 3 to create a fully dense metal matrix composite material[31,32]. This DAR approach would greatly reduce logistical burdens for space exploration by providing a low-power approach for in-situ resource utilization of lunar materials. ~AM&P Acknowledgment The authors would like to thank Marc Pepi from U.S. Army DEVCOM ARL, Marcia Domack from NASA-LRC, Jeremy Broadway from NASA-MSFC, and Sam Ximenes from Astroport Space Technologies for provided materials and discussions on recycling of secondary feedstocks for point-of-need manufacturing. The authors would like to acknowledge that a portion of this work was funded through SERDP Projects WP18-1323 and WP21-1102. For more information: Paul G. Allison, professor and center director, Pointof-Need Innovations Center, Baylor University, One Bear Place #97356, Waco, TX 76798, paul_allison@baylor.edu. References 1. D. Buchbinder, et al., High Power Selective Laser Melting (HP SLM) of Aluminum Parts, Phys. Procedia, Vol. 12, No. PART 1, p 271–278, 2011, doi: 10.1016/j.phpro.2011.03.035. Fig. 10 — In-situ Resource Utilization (ISRU) approach fabricating a metal wrench machined from an aluminum alloy deposition using waste aluminum alloy strips as feedstock. Top le image fromRef 29, bottom le image fromRef 30. 2. D. Ashkenazi, How Aluminum Changed the World: A Metallurgical Revolution through Technological and Cultural Perspectives, Technol. Forecast. Soc. Change, Vol. 143, p 101–113, Jun. 2019, doi: 10.1016/ J.TECHFORE.2019.03.011. 3. M.I. Mohammed, et al., EcoPrinting: Investigating the Use of 100% Recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing, Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium, 2017, p 532–542. 4. N.E. Zander, et al., Recycled Polypropylene Blends as Novel 3D Printing Materials, Addit. Manuf., Vol. 25, p 122–130, Jan. 2019, doi: 10.1016/ j.addma.2018.11.009. 5. Committee on Armed Services, Report of the Committee on Armed Services House of Representatives on H.R. 2500, Washington D.C., 2019. 6. A.P. Mouritz, 8 - Aluminium Alloys for Aircraft Structures, A.P.B.T.-I. to A. M. Mouritz, Ed. Woodhead Publishing, 2012, p 173–201. doi: https://doi. org/10.1533/9780857095152.173. 7. G. Liu and D.B. Müller, Addressing Sustainability in the Aluminum Industry: A Critical Review of Life Cycle Assessments, J. Clean. Prod., Vol. 35, p 108–117, 2012, doi: 10.1016/j. jclepro.2012.05.030. 8. J. Cui and H.J. Roven, Recycling of Automotive Aluminum, Trans. Nonferrous Met. Soc. China (English Ed.), 20(11), p 2057–2063, 2010, doi: 10.1016/ S1003-6326(09)60417-9. 9. E. David and J. Kopac, Aluminum Recovery as a Product with High Added Value using Aluminum Hazardous Waste, J. Hazard. Mater., Vol. 261, p 316–324, 2013, doi: 10.1016/j. jhazmat.2013.07.042. 10. Y.F. Fuziana, et al., Recycling Aluminium (Al 6061) Chip through Powder Metallurgy Route, Mater. Res. Innov., 18(Al 6061), p S6-354-S6-358, 2014, doi: 10.1179/1432891714Z.00000 0000981. 11. P.M. Stotz, et al., Environmental Screening of Novel Technologies to Increase Material Circularity: A Case Study on Aluminium Cans, Resour. Conserv. Recycl., 127(June), p 96–106, 2017, doi: 10.1016/j. resconrec.2017.07.013. 12. H. Hatayama, et al., Evolution of Aluminum Recycling Initiated by the Introduction of Nextgeneration Vehicles and Scrap Sorting Technology, Resour. Conserv. Recycl., Vol. 66, p 8–14, 2012, doi: 10.1016/j. resconrec.2012.06.006. 13. Cpl. R. Clinton and Cpl. A. Carlson, 24th Marine Expeditionary Unit puts Expeditionary Planning to Ultimate Test, DVIDS, 2008. [Online]. Available: https://www.dvidshub.net/ image/81274/24th-marine-expedit ionar y-uni t-puts -expedi t ionar yplanning-ultimate-test. 14. K. Anderson-Wedge, et al., Characterization of the Fatigue Behavior of Additive Friction Stir-deposition AA2219, Int. J. Fatigue, Vol. 142, No. January 2020, p 105951, Jan. 2021, doi: 10.1016/j.ijfatigue.2020.105951. 15. J.B. Jordon, et al., Direct Recycling of Machine Chips through a Novel Solidstate Additive Manufacturing Process, Vol. 193, p 108850, Aug. 2020. 16. B.J. Phillips et al., Effect of Parallel Deposition Path and Interface Material Flow on Resulting Microstructure and Tensile Behavior of Al-Mg-Si Alloy
RkJQdWJsaXNoZXIy MTYyMzk3NQ==