July-August_2022_AMP_Digital

1 8 A D V A N C E D M A T E R I A L S & P R O C E S S E S | J U L Y / A U G U S T 2 0 2 2 Development for the Defense Industry, eds. A.B. Badiru, et al., p 251-253, CRC Press, Boca Raton, Fla., 2017. 8. H. Irrinki, et al., Laser Powder Bed Fusion, Additive Manufacturing Processes, Vol 24, ASM Handbook, eds. D. Bourell, et al., ASM International, p 209–219, 2020, https://doi.org/ 10.31399/asm.hb.v24.a0006621. 9. B. Dutta, S. Babu, and B. Jared, Science, Technology and Applications of Metals in Additive Manufacturing, Elsevier, Amsterdam, 2019. 10. An Introduction to Wire Arc Additive Manufacturing [2020 Update], AMFG, https://amfg.ai/2018/05/17/anintroduction-to-wire-arc-additivemanufacturing. 11. R.P. Martukanitz, DirectedEnergy Deposition Processes, Additive Manufacturing Processes, Vol 24, ASM Handbook, eds. D. Bourell, et al., ASM International, p 220–238, 2020, https://doi.org/10.31399/asm.hb.v24. a0006549. 12. P. Gradl, et al., Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components, J. Mater. Eng. Perform., https://doi.org/10.1007/s11665-02206850-0, April 18, 2022. 13. M. Perrut, et al., High Temperature Materials for Aerospace Applications: Ni-Based Superalloys and γ-TiAl Alloys, Comptes Rendus Physique, Vol 19, p 657-671, 2018. 14. J.A. Lee, Hydrogen Embrittlement of Nickel, Cobalt and Iron-Based Superalloys in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterization and Effects on Particular Alloy Classes, p 624-667, Elsevier Ltd., 2012. 15. J. Zhang, et al., Analysis on Surface Finish of Thin-Wall Parts by Laser Metal Deposition with Annular Beam, Opt. Laser Technol., Vol 119, p 105605, 2019. 16. A.R. Nassar and E.W. Reutzel, Energy Sources for Fusion Additive Manufacturing Processes, Additive Manufacturing Processes, Vol 24, ASM Handbook, eds. D. Bourell, et al., ASM International, p 200–208, 2020, https://doi.org/10.31399/asm.hb.v24. a0006545.

RkJQdWJsaXNoZXIy MTYyMzk3NQ==