May_June_2022_AMP_Digital

1 9 A D V A N C E D M A T E R I A L S & P R O C E S S E S | M A Y / J U N E 2 0 2 2 11. P. Saini, M. Arora, and M.N.V. Ravi Kumar, Poly (Lactic Acid) Blends in Biomedical Applications, Adv. Drug Deliv. Rev., Vol 107, p 47-59, 2016. 12. J. Wang, et al., A Review on Polyhydroxyalkanoate Production from Agricultural Waste Biomass: Development, Advances, Circular Approach, and Challenges, Bioresour. Technol., Vol 342, 126008, 2021. 13. H. Pakalapati, et al., Development of Polyhydroxyalkanoates Production from Waste Feedstocks and Applications, J. Biosci. Bioeng., Vol 126, p 282-292, 2018. 14. S. Khot, et al., Development and Application of Triglyceride-Based Polymers and Composites, J. Appl. Polym. Sci., Vol 82, p 703-723, 2001. 15. A.M. Nafchi, et al., Thermoplastic starches: Properties, challenges, and prospects, Starch-Starke, Vol 65, p61-72, 2013. 16. K.M. Villadiego, et al., Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review, J. Polym. Environ., Vol 30, p 7591, 2022. 17. https://www.thehenryford.org/ col lect ions -and- research/digi tal - resources/popular-topics/soy-bean-car. 18. h t t p : / /adapt .mx / h i s to r y - o f - bioplastics-in-the-automotive-industry. 19. https : //bioplast icsnews .com/ 2019 / 11 / 26 / h i sto r y - b i op l ast i c s - automotive-car-industry. 20. A. Nandakumar, J. Chuah, and K. Sudesh, Bioplastics: A Boon or Bane?, Renew. Sust. Energ. Rev., Vol 147, 111237, 2021. 21. A. Bouzouita, et al., Poly(lactic acid)-Based Materials for Automotive Applications. In: M. Di Lorenzo and R. Androsch (eds.), Industrial Applications of Poly(lactic acid), Advances in Polymer Science, Vol 282, Springer, Cham. https://doi.org/10.1007/12_2017_10. 22. D. Notta-Cuvier, et al., Tailoring Polylactide Properties for Automotive Applications: Effects of Co-Addition of Halloysite Nanotubes and Selected Plasticizer, Macromol. Mater. Eng., Vol 300, p 684-698, 2015. 23. S. Abu Aldam, et al., On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting, J. Mater. Eng. Perform., Vol 29, p 5542-5556, 2020. 24. M.G. Aruan Efendy and K.L. Pickering, Comparison of Strength and Young Modulus of Aligned Discontinuous Fibre PLA Composites Obtained Experimentally and from Theoretical Prediction Models, Compos. Struct., Vol 208, p 566-573, 2019. 25. S. Hinchcliffe, K. Hess, and Wil Srubar III, Experimental and Theoretical Investigation of Prestressed Natural Fiber-Reinforced Polylactic Acid (PLA) Composite Materials, Comp. B. Eng., Vol 95, p 346-354, 2016. 26. S. Gupta, et al., On the Design of Novel Biofoams Using Lignin, Wheat Straw, and Sugar Beet Pulp as Precursor Material, ACS Omega, Vol 5, p 1707817089, 2020.

RkJQdWJsaXNoZXIy MTYyMzk3NQ==