April_2022_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | A P R I L 2 0 2 2 5 3 Ni-rich NiTi Single Crystals with One Family of Ni4Ti3 Precipitates, Mater. Sci. Eng., A 378(1-2) Spec. Issue: 152–156, 2004. 16. J. Khalil-Allafi, et al., Ni4Ti3-precipitation during Aging of NiTi Shape Memory Alloys and its Influence on Martensitic Phase Transformations, Acta Mater., 50(17): 4255–4274, 2002. 17. H. Mori, et al., Electron Irradiation Induced Amorphization at Dislocations in NiTi, Jpn. J. Appl. Phys. Part 2 Lett., 22(2): L94–L96, 1983. 18. G. Thomas, et al., Electron Irradiation Induced Crystalline Amorphous Transitions in NiTi Alloys,” Scr. Metall., 16(5): 589–592, 1982. 19. J.L. Brimhall, et al., The Amorphous Phase Transition in Irradiated NiTi Alloy, Radiat. Eff., 90(3-4): 241–258, 1985. 20. D.F. Pedraza, Mechanisms of the Electron Irradiation-induced Amorphous Transition in Intermetallic Compounds, J. Mater. Res., 1(3): 425–441, 1986. 21. P. Moine and C. Jaouen, Ion Beam Induced Amorphization in the Intermetallic Compounds NiTi and NiAl, J. Alloys Compounds, 194( 2), 1993. 22. P.J. Maziasz, et al., Temperature Dependence of the Amorphization of NiTi Irradiated with Ni Ions, J. Mater. Res., 5(5): 932–941, 1990. 23. T.B. Lagrange and R. Gotthard, Microstructural Evolution and Thermo-mechanical Response of Ni ion Irradiated TiNi SMA Thin Films, Optoelec. Adv. Mater.-Rapid Commun., 5(1), 2003. 24. T. Lagrange, et al., Irradiation-induced Phase Transformation in Undeformed and Deformed NiTi Shape Memory Thin Films by High-Energy Ion Beams, Philos. Mag., 85(4-7) Spec. Issue: 577–587, 2005. 25. G. Laplanche, et al., Sudden Stress-induced Transformation Events during Nanoindentation of NiTi Shape Memory Alloys, Acta Mater., 78: 144–160, 2014. 26. G. Laplanche, et al., Orientation Dependence of Stress-induced Martensite Formation during Nanoindentation in NiTi Shape Memory Alloys, Acta Mater., 68: 19–31, 2014. 27. J. Pfetzing-Micklich, et al., Nanoindentation of a Pseudoelastic NiTiFe Shape Memory Alloy, Adv. Eng. Mater., 12(1–2): 13–19, 2010. 28. P. Hosemann, et al., An Exploratory Study to Determine Applicability of Nano-hardness andMicro-compressionMeasurements for Yield Stress Estimation, J. Nucl. Mater., 375(1): 135–143, 2008. 29. P. Hosemann, et al., Nanoindentation on Ion Irradiated Steels,” J. Nucl. Mater., 389(2): 239–247, 2009. 30. D.M. Norfleet, et al., Transformation-induced Plasticity during Pseudoelastic Deformation in Ni-Ti Microcrystals, Acta Mater., 57(12): 3549–3561, 2009. 31. J. Pfetzing-Micklich, et al., On the Crystallographic Anisotropy of Nanoindentation in Pseudoelastic NiTi, Acta Mater., 61(2): 602–616, 2013. 32. J. Pfetzing-Micklich, et al., Orientation Dependence of Stress-induced Phase Transformation and Dislocation Plasticity in NiTi Shape Memory Alloys on the Micro Scale, Mater. Sci. Eng. A, 538: 265–271 (2012). doi: 10.1016/j.msea.2012.01.042. 33. K. Gall, et al., Tension-compression Asymmetry of the Stressstrain Response in Aged Single Crystal and Polycrystalline NiTi, Acta Mater., 47(4): 1203-1217, 1999. 34. K. Hattar, et al., Concurrent In Situ Ion Irradiation Transmission Electron Microscope, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 338: 56–65, 2014. 35. J.F. Ziegler, et al., SRIM - The Stopping and Range of Ions in Matter, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., 268(11-12): 1818–1823, 2010. 36. J. Zhu, et al., Linear-superelastic Metals by Controlled Strain Release via Nanoscale Concentration-gradient Engineering, Mater. Today, 33(10): 17–23, 2020. 37. C. Domb and J. Lebowitz, Eds., Phase Transitions and Critical Phenomena, Vol. 18 - 1st Ed., Elsevier, 2000. 38. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117(1): 1–19, 1995. 39. W-S Ko, et al., Development and Application of a Ni-Ti Interatomic Potential with High Predictive Accuracy of the Martensitic Phase Transition, Phys. Rev. B, 92(13): 134107, 2015. 40. A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng,. 18(1): 015012, 2010. 41. J. Zupanc, et al., New Thermomechanically Treated NiTi Alloys - A Review, Int. Endod. J., 51(10): 1088–1103, 2018. 42. S. Zaefferer and N.N. Elhami, Theory and Application of Electron Channelling Contrast Imaging under Controlled Diffraction Conditions, Acta Mater., 75: 20–50, 2014. 43. S.J. Zinkle, Radiation-induced Effects on Microstructure, in Comprehensive Nuclear Materials, vol. 1., 65–98, Elsevier Ltd., 2012. 44. A. Reichardt, et al., In Situ Micro Tensile Testing of He +2 Ion Irradiated and Implanted Single Crystal Nickel Film, Acta Mater., 100: 147-154, 2015. 45. C. Lu, et al., Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys, Sci. Rep., 6(1): 19994–19994, 2016. 46. R.Z. Valiev, et al., Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 45(2): 103–189, 2000. 47. A.T. Motta, Amorphization of Intermetallic Compounds under Irradiation – A Review, J. Nucl. Mater., 244(3): 227–250, 1997. 7 FEATURE

RkJQdWJsaXNoZXIy MTYyMzk3NQ==