October_2021_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | O C T O B E R 2 0 2 1 2 7 Spinal Cord Injury Repair, ACS Appl. Mater. Interfaces, 10(21):17742-55, 2018. 21. S.R. Shin, et al., Reduced Graphene Oxide‐Gelma Hybrid Hydrogels as Scaf- folds for Cardiac Tissue Engineering, Small, 12(27):3677-89, 2016. 22. B.W. Walker, et al., Engineering a Naturally-Derived Adhesive and Conductive Cardiopatch, Biomaterials, 207:89-101, 2019. 23. C.S. Russell, et al., In Situ Printing of Adhesive Hydrogel Scaffolds for the Treatment of Skeletal Muscle Injuries, ACS Appl. Bio Mater., 3(3):1568-79, 2020. 24. Y.C. Chen, et al., Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Meth- acrylate Hydrogels, Adv. Funct. Mater., 22(10):2027-39, 2012. 25. Y. Zuo, et al., Photo-Cross- Linkable Methacrylated Gelatin and Hydroxyapatite Hybrid Hydrogel for Modularly Engineering Biomimetic Osteon, ACS Appl. Mater. Interfaces, 7(19):10386-94, 2015. 26. D. Gan, et al., Mussel-Inspired Dopamine Oligomer Intercalated Tough And Resilient Gelatin Methacryloyl (GelMA) Hydrogels for Cartilage Re- generation, J. Mater. Chem. B, 7(10): 1716-25, 2019. 27. X. Zhao, et al., Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering, Adv. Healthc. Mater., 5(1):108-118, 2016. 28. X. Zhao, et al., Cell Infiltrative Hydrogel Fibrous Scaffolds for Accel- erated Wound Healing, Acta Biomater., 49:66-77, 2017. 29. Y. Wu, et al., 3D Bioprinting of Bicellular Liver Lobule-Mimetic Struc- tures via Microextrusion of Cellulose Nanocrystal-Incorporated Shear-Thinning Bioink, Sci. Rep., 10(1):1-2, 2020. 30. A. Assmann, et al., A Highly Adhesive andNaturally Derived Sealant, Biomater., 140:115-127, 2017.

RkJQdWJsaXNoZXIy MTMyMzg5NA==