October_2021_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | O C T O B E R 2 0 2 1 2 6 regeneration. In vivo experiments in- volving small and large animal models show that GelMA effectively seals lung leakages with improved performance versus fibrin glue, poly(ethylene glycol) glue, and sutures only [30] . Based on this set of promising re- sults, additional applications of bio- printed GelMA for tissue engineering are expected over the coming years. ~AM&P For more information: Pete Gabriel L. Ledesma, Institute of Chemistry, University of the Philippines Diliman, +63.966.194.9848, plledesma@up.edu. ph. References 1. W. Wang, R. Narain, and H. Zeng, Polymer Science and Nanotechnology, p 203-244, Elsevier, 2020. 2. W. Hu, et al., Advances in Crosslinking Strategies of Biomedical Hydrogels, Biomater. Sci., 7(3):843-855, 2019. 3. S.R. Caliari and J.A. Burdick, A Practical Guide to Hydrogels for Cell Culture, Nat. Methods, 13(5):405-414, 2016. 4. M. Liu, et al., InjectableHydrogels for Cartilage and Bone Tissue Engineering, Bone Res., 5(1):1-20, 2017. 5. J. Li and D.J. Mooney, Designing Hydrogels for Controlled Drug Delivery, Nat. Rev. Mater., 1(12):1-7, 2016. 6. L. Li, et al., A Nanostructured Conductive Hydrogels-Based Biosensor Platform for Human Metabolite Detection, Nano Lett., 15(2):1146-51, 2015. 7. G.S. Hussey, J.L. Dziki, and S.F. Badylak, Extracellular Matrix-Based Materials for Regenerative Medicine, Nat. Rev. Mater., 3(7):159-173, 2018. 8. A.I. Van Den Bulcke, et al., Structural and Rheological Properties of Meth- acrylamide Modified Gelatin Hydro- gels, Biomacromolecules, 1(1):31-38, 2000. 9. J.W. Nichol, et al., Cell-Laden Microengineered Gelatin Methacrylate Hydrogels, Biomaterials, 31(21):5536- 44, 2010. 10. A. Hayashi and S.C. Oh, Gelation of Gelatin Solution, Agr. Biol. Chem., 47(8):1711-16, 1983. 11. H. Shirahama, et al., Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis, Sci. Rep., 6(1):1, 2016. 12. M. Zhu, et al., Gelatin Methacryloyl and its Hydrogels with an Exceptional Degree of Controllability and Batch-to- Batch Consistency, Sci. Rep., 9(1):1-3, 2019. 13. E.Hoch, etal.,StiffGelatinHydrogels can be Photo-Chemically Synthesized from Low Viscous Gelatin Solutions us- ing Molecularly Functionalized Gelatin with a High Degree of Methacrylation, J. Mater. Sci.: Mater. Med., 23(11): 2607-17, 2012. 14. H.E. Park, et al., Effect of Temperature on Gelation and Cross- Linking of Gelatin Methacryloyl for Biomedical Applications, Phys. Fluids, 32(3):033102, 2020. 15. W. Liu, et al., Extrusion Bioprinting of Shear‐Thinning Gelatin Methacryloyl Bioinks, Adv. Healthc. Mater., 6(12): 1601451, 2017. 16. A.D. Graham, High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing, Sci. Rep., 7(1):1, 2017. 17. Z. Wang, et al., A Simple and High- Resolution Stereolithography-Based 3D Bioprinting System using Visible Light Crosslinkable Bioinks, Biofabrication, 7(4):045009, 2015. 18. R. Devillard, et al., Cell Patterning by Laser-Assisted Bioprinting, Methods Cell Biol., 119:159-174, 2014. 19. W. Ye, et al., 3D Printing of Gelatin Methacrylate-Based Nerve Guidance Conduits with Multiple Channels, Mater. Des., 192:108757, 2020. 20. L. Fan, et al., Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three- Dimensional Biomimetic Hydrogel for Fig. 3 — Printability of the hybrid bioink: (a) Schematic of the liver lobule-mimetic honeycomb structure; (b-i, c-i) top and (b-ii, c-ii) side views of the freeform printed structures with a height of 1.8 and 3.4 mm, respectively; (d) schematic illustration of embedded printing of the honeycomb structure; and (e-i, f-i) top and (e-ii, f-ii) side views of the embedded printed structures with a height of 3.75 and 6.8 mm, respectively. Scale bars: 5 mm. Courtesy of Y. Wu et al. [29]

RkJQdWJsaXNoZXIy MTMyMzg5NA==