October_2021_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | O C T O B E R 2 0 2 1 1 8 Acknowledgment Part of the research was carried out at the Jet Propulsion Laborato- ry, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The author speaks in the capacity as an active researcher in the fields of additive manufacturing and metallic glasses, not on behalf of the Jet Propulsion Laboratory, Califor- nia Institute of Technology. Reference herein to any specific commercial prod- uct, process, or service by trade name, trademark, manufacturer, or other- wise, does not constitute or imply its endorsement by the United States Gov- ernment or the Jet Propulsion Labora- tory, California Institute of Technology. References 1. W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 23, p 1917–1928, 2014, doi. org/10.1007/s11665-014-0958-z. 2. B. Blakey-Milner, et al., Metal Additive Manufacturing in Aerospace: A Review, Mater. Des., 209, 110008, 2021, doi.org/10.1016/j.matdes.2021.110008. 3. M.F. Ashby and A.L. Greer, Metallic Glasses as Structural Mater- ials, Scr. Mater., 54, p 321-326, 2006, doi.org/10.1016/J.SCRIPTAMAT.2005. 09.051. 4. M.Telford,TheCaseforBulkMetallic Glass, Mater. Today., 7, 36–43, 2004, doi. org/10.1016/S1369-7021(04)00124-5. 5. J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater., 22, p 1566–1597, 2010, doi.org/10.1002/ adma.200902776. 6. N. Sohrabi, J. Jhabvala, and R.E. Log, Additive Manufacturing of Bulk Metallic Glasses — Process, Challenges and Properties: A Review, Metals (Basel), 11, p 1279, 2021, doi.org/10.3390/ met11081279. 7. H. Liu, et al., Crystallization in Additive Manufacturing of Metallic Glasses : A Review, Addit. Manuf., 36, 101568, 2020, doi.org/10.1016/ j.addma.2020.101568. 8. C. Zhang, D. Ouyang, S. Pauly, and L. Liu, 3D Printing of Bulk Metallic Glas- ses, Mater. Sci. Eng. R., 145 (2021) 100625, doi.org/10.1016/j.mser.2021.100625. 9. W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature, 187, p 869–870, 1960, doi.org/10.1038/ 187869b0. 10. P. Bordeenithikasem, Y. Shen, H.L. Tsai, D.C. Hofmann, Enhanced Mechanical Properties of Additively Manufactured Bulk Metallic Glasses Produced through Laser Foil Printing fromContinuousSheetmetal Feedstock, Addit. Manuf., 19, p 95–103, 2018, doi. org/10.1016/j.addma.2017.11.010. 11. P. Bordeenithikasem, M. Stolpe, A. Elsen, D.C. Hofmann, Glass Forming Ability, Flexural Strength, and Wear Properties of Additively Manufactured Zr-basedBulkMetallicGlassesProduced through Laser Powder Bed Fusion, Addit. Manuf., 21, p 312–317, 2018, doi. org/10.1016/j.addma.2018.03.023. 12. D.C. Hofmann, et al., Developing Processing Parameters and Characteriz- ing Microstructure and Properties of an Additively Manufactured FeCrMoBC Metallic Glass Forming Alloy, Adv. Eng. Mater., 20, p 1–11, 2018, doi. org/10.1002/adem.201800433. 13. P. Bordeenithikasem, et al., Con- trolling Microstructure of FeCrMoBC Amorphous Metal Matrix Composites via Laser Directed Energy Deposition, J. Alloys Compd., 2020, doi.org/10.1016/ j.jallcom.2020.157537. 14. P. Tsai, and K.M. Flores, High- throughput Discovery and Charac- terization of Multicomponent Bulk Metallic Glass Alloys, Acta Mater. , 120, p 426–434, 2016, doi.org/10.1016/ j.actamat.2016.08.068. 15. C. Zhang, et al., 3D Printing of Fe- based Bulk Metallic Glasses and Com- posites with Large Dimensions and Enhanced Toughness by Thermal Spray- ing, J. Mater. Chem. A., 6, p 6800–6805, 2018, doi.org/10.1039/c8ta00405f. 16. S. Yin and R. Lupoi, Cold Sprayed Metallic Glass and High Entropy Alloy Deposits, Cold Spray Addit. Manuf. from Fundam. to Appl., Springer International Publishing, Cham, p 153–165, 2021, doi. org/10.1007/978-3-030-73367-4_8. 17. W. Wu, et al., Ultrasonic Additive Manufacturing of Bulk Ni-based Metallic Glass, J. Non. Cryst. Solids., 506, p 1–5, 2019, doi.org/10.1016/ j.jnoncrysol.2018.12.008. 18. M.A. Gibson, et al., 3D Printing Metals like Thermoplastics: Fused Filament Fabricationof MetallicGlasses, Mater. Today, 21, p 697–702, 2018, doi. org/10.1016/j.mattod.2018.07.001. 19. D.C. Hofmann, et al., Towards Additively Manufacturing Excavating Tools for Future Robotic Space Exploration, Eng. Reports, e12219, 2020, doi.org/10.1002/eng2.12219. 20. C. Zhang, et al., 3D Printing of Zr-based Bulk Metallic Glasses and Components for Potential Biomedical Applications, J. Alloys Compd., 790, p 963–973, 2019, doi.org/10.1016/ j.jallcom.2019.03.275.

RkJQdWJsaXNoZXIy MTMyMzg5NA==