January_2021_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | J A N U A R Y 2 0 2 1 3 7 10. S.L. Warnes and C.W. Keevil, Inactivation of Norovirus on Dry Cop- per Alloy Surfaces, PLoS One , 8 (9), p e75017, Sep. 2013, doi: 10.1371/ journal.pone.0075017. 11. S.L. Warnes and C.W. Keevil, Mechanism of Copper Surface Toxicity in Vancomycin-Resistant Enterococci following Wet or Dry Surface Con- tact, Appl. Environ. Microbiol. , 77 (17), p 6049–6059, Sep. 2011, doi: 10.1128/ AEM.00597-11. 12. S.L. Warnes, Z.R. Little, and C.W. Keevil, Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials, MBio , 6 (6), Nov. 2015, doi: 10.1128/mBio.01697-15. 13. K. Sundberg, et al., The Effect of Nano-scale Surface Roughness on Cop- per Cold Spray Inactivation of Influenza A Virus, Int. J. Nanotechnol. Med. Eng. , 4, p 33–40, 2019. 14. B. Sousa, et al., Spherical Nano- mechanical Characterization of Novel Nanocrystalline Cu Cold Spray Manu- facturedMaterials, in APSMarchMeeting 2019 , 2019. 15. K. Sundberg, et al., Finite Element Modeling of Single-Particle Impacts for the Optimization of Antimicrobial Copper Cold Spray Coatings, J. Therm. Spray Technol. , Sep. 2020, doi: 10.1007/ s11666-020-01093-8. 16. B.C. Sousa, et al., Understanding the Antipathogenic Performance of Nanostructured and Conventional Cop- per Cold Spray Material Consolidations and Coated Surfaces, Crystals , 10 (6), p 504, Jun. 2020, doi: 10.3390/ cryst10060504. 17. V.K. Champagne and D.J. Helfritch, A Demonstration of the Antimicrobial Effectiveness of Various Copper Sur- faces, J. Biol. Eng. , 7 (1), p 8, 2013, doi: 10.1186/1754-1611-7-8. 18. K. Sundberg, et al., Effectiveness of Nanomaterial Copper Cold Spray Surfaces on Inactivation of Influenza A Virus, J. Biotechnol. Biomater. , 22, p 16753–16763, 2015. 19. F.S. da Silva, et al., Corrosion Resistance and Antibacterial Properties of Copper Coating Deposited by Cold Gas Spray, Surf. Coatings Technol. , 2019, doi: 10.1016/j.surfcoat.2019.01.029. 20. V. Champagne, K. Sundberg, and D. Helfritch, Kinetically Deposited Copper Antimicrobial Surfaces, Coatings , 9 (4), p 257, Apr. 2019, doi: 10.3390/ coatings9040257. 21. K. Sundberg, et al., The Effect of Corrosion on Conventional and Nanomaterial Copper Cold Spray Sur- faces for Antimicrobial Applications, Biomed. J. Sci. Tech. Res. , 22 (3), Nov. 2019, doi: 10.26717/BJSTR.2019.22.003768. 22. K.L. Sundberg et al., Microstructural Characterization of Conventional and Nanostructured Copper Cold Gas- Dynamic Spray Material Consolidations, J. Biotechnol. Biomater. , 2020. 23. M.D. Lucas et al., Laboratory-based Study of Novel Antimicrobial Cold Spray Coatings to Combat Surface Microbial Contamination,” Infect. Control Hosp. Epidemiol. , p 1–6, Aug. 2020, doi: 10.1017/ ice.2020.335.

RkJQdWJsaXNoZXIy MjA4MTAy