July/August_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | J U L Y / A U G U S T 2 0 2 0 1 9 challenges that affect the ubiquitous involvement of AM. High-resolution microscopy plays a vital role in under- standing the challenges and controlling the properties of HEAs processed by AM. To highlight the significance of high-resolution microscopy, the funda- mental problems related to the HEAs processed via AM route has been pre- sented together with the potentially ac- ceptable solutions. In conjunction with microscopy techniques, data-driven approaches provide a new pathway to accurately and efficiently predict and analyze the microstructural aspects in materials. ~AM&P Acknowledgment Ritesh Sachan acknowledges the support of faculty start-up funding at Oklahoma State University. For more information: Ritesh Sachan, assistant professor, Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, rsachan@okstate.edu or Amit Pand- ey, Advanced Technology Center, Lock- heed Martin Space, Denver, CO, amit. pandey@lmco.com . References 1. Y.F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, Vol 19, No. 6, p. 349–362, 2016, doi: 10.1016/j. mattod.2015.11.026. 2. J.W. Yeh et al., Nanostructured High-Entropy Alloys with Multiple Prin- cipal Elements: Novel Alloy Design Con- cepts and Outcomes, Adv. Eng. Mater., 2004, doi: 10.1002/adem.200300567. 3. J.W. Yeh, Recent Progress in High- Entropy Alloys, Ann. Chim. Sci. des Mater., 2006, doi: 10.3166/acsm.31.633-648. 4. W. Gao et al., The Status, Chal- lenges, and Future of Additive Manu- facturing in Engineering, CAD Comput. Aided Des., 2015, doi: 10.1016/j.cad.2015. 04.001. 5. S. Gorsse, C. Hutchinson, M. Gouné, and R. Banerjee, Additive Manufac- turing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High- Entropy Alloys, Science and Technology of Advanced Materials, 2017, doi: 10.1080/14686996.2017.1361305. 6. A. Piglione, B. Dovgyy, C. Liu, C. M. Gourlay, P.A. Hooper, and M.S. Pham, Printability and Microstructure of the CoCrFeMnNi High-Entropy Alloy Fabri- cated by Laser Powder Bed Fusion, Mater. Lett., 2018, doi: 10.1016/j. matlet.2018.04.052. 7. D. Choudhuri et al., Change in the Primary Solidification Phase from fcc to bcc-Based B2 in High Entropy or Com- plex Concentrated Alloys, Scr. Mater., 2017, doi:10.1016/j.scriptamat.2016.09. 023. 8. T. Borkar et al., A Combinatorial Assessment of AlxCrCuFeNi2 (0 < x < 1.5) Complex Concentrated Alloys: Micro- structure, Micro-hardness, and Magne- tic Properties, Acta Mater., Vol 116, p 63–76, 2016, doi: 10.1016/j.actamat. 2016.06.025. 9. B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw, and H.L. Fraser, Nature of the Inter- faces Between the Constit-uent Phases in the High Entropy Alloy CoCrCuFeNiAl, Ultramicroscopy, 2013, doi: 10.1016/j.ultramic. 2013.06.006. 10. R. Sachan et al., Radiation-induced Ex- treme Elastic and In- elastic Interactions in Concentrated Solid So- lutions, Mater. Des., Vol 150, 2018, doi: 10.1016/ jmatdes.2018.04.011. 11. Z. Li and D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstruc- ture, and Mechanical Properties, JOM, Vol 69, No. 11, p 2099–2106, 2017, doi: 10.1007/s11837-017-2540-2. 12. M.S.K.K.Y. Nartu et al., Enhanced Tensile Yield Strength in Laser Addi- tively Manufactured Al 0.3 CoCrFeNi High Entropy Alloy, Materialia, 2020, doi: 10.1016/j.mtla.2019.100522. 13. Z. Wang, P. Liu, Y. Xiao, X. Cui, Z. Hu, and L. Chen, A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing under Uncertainty, J. Manuf. Sci. Eng. Trans. ASME, 2019, doi: 10.1115/1.4043798. 14. X. Sang, E.D. Grimley, C. Niu, D.L. Irving, and J.M. Lebeau, Direct Observation of Charge Mediated Lattice Distortions in Complex Oxide Solid Solutions, Appl. Phys. Lett., 2015, doi: 10.1063/1.4908124.

RkJQdWJsaXNoZXIy MjA4MTAy