May/June_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | M A Y / J U N E 2 0 2 0 2 0 depicted in the outer circle. In essence, every component in the energy arena will benefit from self-healing attributes by enhancing the longevity of energy harvesting and storage devices. ~AM&P Acknowledgments The authors thank the Department of Energy, Energy Efficiency and Renew- able Energy (EERE) Program (Award # DE-EE0008827) for partial support of this work. J.E. Sirrine Foundation at Clemson University is also acknowl- edged for a partial support of this work. References 1. Y. Yang, X. Ding, and M.W. Urban, Chemical and Physical Aspects of Self- Healing Materials, Progress in Polymer Science, 49, p 34-59, 2015. 2. S. Wang, and M.W. Urban, Self- Healing Polymers, Nature Materials Reviews, expected publication 2020. 3. P. Cordier, F. Tournilhac, C. Soulié- Ziakovic, and L. Leibler, Self-Healing and Thermoreversible Rubber from Supramolecular Assembly, Nature, 451(7181), p 977-980, 2008. 4. S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, and Y. Gao, Highly Stretchable and Self-Healable Super- capacitor with Reduced Graphene Oxide Based Fiber Springs, ACS Nano, 11(2), p 2066-2074, 2017. 5. N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, and T. Someya, Printable Elastic Conductors by in situ Formation of Silver Nanoparticles from Silver Flakes, Nature Materials, 16(8), p 834- 840, 2017. 6. J. Xu, P. Chen, J. Wu, P. Hu, Y. Fu, W. Jiang, and J. Fu, Notch-Insensitive, Ultrastretchable, Efficient Self-Healing Supramolecular Polymers Constructed fromMultiphase ActiveHydrogenBonds for Electronic Applications, Chemistry of Materials, 31(19), p 7951-7961, 2019. 7. S. Yan, G. Zhang, H. Jiang, F. Li, L. Zhang, Y. Xia, Z. Wang, Y. Wu, and H. Li, Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics, ACS Applied Materials & Interfaces, 11(11), p 10736-10744, 2019. 8. Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, and C. Zhi, A Self-Healable and Highly Stretchable Supercapacitor Based on a Dual Crosslinked Polyelectrolyte, Nature Communications, 6(1), p 1-8, 2015. 9. Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong, C. Keplinger, and C. Wang, A Transparent, Self‐Healing, Highly Stretchable Ionic Conductor, Advanced Materials, 29(10), p 1605099, 2017. 10. J.Y. Oh, D. Son, T. Katsumata, Y. Lee, Y. Kim, J. Lopez, H.-C. Wu, J. Kang, J. Park, and X. Gu, Stretchable Self- Healable Semiconducting Polymer Film for Active-Matrix Strain-Sensing Array, Science Advances, 5(11), p eaav3097, 2019. 11. J.Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J.N. Wang, B.C. Schroeder, T. Kurosawa, J. Lopez, and T. Katsumata, Intrin- sically Stretchable and Healable Semi- conducting Polymer for Organic Tran- sistors, Nature, 539(7629), p 411-415, 2016. 12. Y. Guo, K. Zheng, and P. Wan, A Flexible Stretchable Hydrogel Elec- trolyte for Healable All‐in‐One Con- figured Supercapacitors, Small , 14(14), p 1704497, 2018. 13. H. Wang, B. Zhu, W. Jiang, W.Y. Yang, W.R. Leow, H. Wang, and X. Chen, A Mechanically and Electrically Self‐ Healing Supercapacitor, Advanced Ma- terials, 26(22), p 3638-3643, 2014. 14. A.J. Bandodkar, C.S. López, A.M.V. Mohan, L. Yin, R. Kumar, and J. Wang, All-Printed Magnetically Self-Healing Electrochemical Devices, Science Ad- vances, 2(11), p e1601465, 2016. 15. C.R. Chen, H. Qin, H.P. Cong, and S.H. Yu, A Highly Stretchable and Real‐Time Healable Supercapacitor, Advanced Materials, 31(19), p 1900573, 2019. 16. W. Li, X. Li, J. Yu, J. Liao, B. Zhao, L. Huang, A. Abdelhafiz, H. Zhang, J.H. Wang, and Z. Guo, A Self-Healing Lay- ered GeP Anode for High-Performance Li-ion Batteries Enabled by Low Forma- tion Energy, Nano Energy, 61, p 594-603, 2019. 17. T.-W. Kwon, Y.K. Jeong, E. Deniz, S.Y. AlQaradawi, J.W. Choi, and A. Coskun, Dynamic Cross-Linking of Poly- meric Binders Based on Host–Guest Interactions for Silicon Anodes in Lith- ium Ion Batteries, ACS Nano, 9(11), p 11317-11324, 2015. 18. Y.K. Jeong, T.-W. Kwon, I. Lee, T.-S. Kim, A. Coskun, and J.W. Choi, Millipede-Inspired Structural Design Principle for High Performance Poly- saccharide Binders in Silicon Anodes, Energy & Environmental Science, 8(4), p 1224-1230, 2015. 19. S. Hu, S.L. Wang, T. Huang, and A. Yu, A Conductive Self-Healing Hydrogel Binder for High-Performance Silicon Anodes in Lithium-ionBatteries, Journal of Power Sources, 449, p 227472, 2020. 20. B.B. Jing and C.M. Evans, Catalyst- Free Dynamic Networks for Recyclable, Self-Healing Solid Polymer Electrolytes, Journal of the American Chemical Society, 141(48), p 18932-18937, 2019. 21. X. Tian, P. Yang, Y. Yi, P. Liu, T. Wang, C. Shu, L. Qu, W. Tang, Y. Zhang, and M. Li, Self-Healing and High Stretchable Polymer Electrolytes Based on Ionic Bonds with High Conductivity for Lithium Batteries, Journal of Power Sources, 450, p 227629, 2020. 22. Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, and Q. Zhao, A Polymer Scaffold for Self-Healing Perovskite Solar Cells, Nature Communications, 7, p 10228, 2016. 23. A.J. Nozik, QuantumDot Solar Cells, Physica E: Low-dimensional Systems and Nanostructures, 14(1-2), p 115-120, 2002. 24. G. Li, R. Zhu, and Y. Yang, Polymer Solar Cells, NaturePhotonics, 6(3), p 153, 2012.

RkJQdWJsaXNoZXIy MjA4MTAy