Feb_March_AMP_Digital

A D V A N C E D M A T E R I A L S & P R O C E S S E S | F E B R U A R Y / M A R C H 2 0 2 0 2 4 J2W+N Steel,” Opt. Laser Technol. , 59, p 11–18, 2014, doi:10.1016/ j.optlastec.2013.11.021. 2. L. Ruifeng, et al., “A Comparative Study of Laser Beam Welding and Laser-MIG Hybrid Welding of Ti-Al- Zr-Fe Titanium Alloy,” Mater. Sci. Eng. A-Struct. Mater. Prop. Microstr. Proc. , 528, 3, p 1138–1142, 2011, doi:10.1016/ j.msea.2010.09.084. 3. L. Chao, et al., “Effect of Inclusions Modified by Rare Earth Elements (Ce, La) on Localized Marine Corrosion in Q460NH Weathering Steel,” Corros. Sci. , 129, p 82–90, 2017, doi:10.1016/ j.corsci.2017.10.001. 4. A. Kurc-Lisiecka, “Impact Toughness of Laser-Welded Butt Joints of the New Steel Grade Strenx 1100MC,” Materiali in Tehnologije , 51, 4, p 643–649, 2017, doi:10.17222/mit.2016.234. 5. M. Guolong, L. Li, and Y. Chen, “Effects of BeamConfigurations on Wire Melting and Transfer Behaviors in Dual Beam Laser Welding with Filler Wire,” Opt. Laser Technol. , 91, p 138–148, 2017, doi:10.1016/j.optlastec.2016.12.019. 6. Z. Xinyi, W. Yang, and R. Xiao, “Microstructure and Mechanical Prop- erties of Laser Beam Welded Al–Li Alloy 2060 with Al–Mg Filler Wire,” Mater. Des. , 88, p 446–450, 2015, doi:10.1016/ j.matdes.2015.08.144. 7. J. Górka andA. Ozgowicz, “Structure and Properties of Laser-Beam-Welded Joints of Low-Alloy High-Strength Steel Docol 1200M with a Martensitic Structure,” Materiali in Tehnologije , 52, 2, p 189–193, 2018, doi:10.17222/ mit.2017.077. 8. X. Guoxiang, et al., “Modelling of Fluid Flow Phenomenon in Laser + GMAW Hybrid Welding of Aluminum Alloy Considering Three Phase Coupling and Arc Plasma Shear Stress,” Opt. Laser Technol. , 100, p 244–255, 2018, doi:10.1016/j.optlastec.2017.10.009. 9. L. Ruoyang, et al., “A Study of Narrow Gap Laser Welding for Thick Plates using the Multi-Layer and Multi- Pass Method,” Opt.Laser Technol. , 64, p 172–183, 2014, doi:10.1016/ j.optlastec.2014.04.015. 10. G. Wei, et al., “Process-Parameter Interactions in Ultra-Narrow Gap Laser Welding of High Strength Steels,” Int. J. Adv. Manuf. Technol. , 84, 9–12, p 2547–2566, 2015, doi:10.1007/ s00170-015-7881-9. 11. B. Shanmugarajan, P. Sathiya, and G. Buvanashekaran, “Mechanical and Metallurgical Properties of Autogenous Laser Welded P92 Material,” J. Manuf. Proc. , 24, p 11–18, 2016, doi:10.1016/ j.jmapro.2016.07.003. 12. G.F. Sun, et al., “Investigation on Microstructure and Mechanical Prop- erties of NV E690 Steel Joint by Laser- MIG Hybrid Welding,” Mater. Des. , 127, p 297–310, 2017, doi:10.1016/ j.matdes.2017.04.054. 13. D. Parkes, et al., “Tensile Properties of Fiber Laser Welded Joints of High Strength Low Alloy and Dual-Phase Steels at Warm and Low Temperatures,” Mater. Des. , 56, p 193–199, 2014, doi:10.1016/j.matdes.2013.10.087. 14. Y. Guang, et al., “Studying the Effect of Lubricant on Laser Joining of AA 6111 Panelswith theAdditionof AA4047 Filler Wire,” Mater. Des. , 116, p 176–187, 2017, doi:10.1016/j.matdes.2016.12.014. 15. W. Haiying, et al., “Energy Efficiency Evaluation of Hot-Wire Laser Welding Based on Process Characteristic and Power Consumption,” J. Cleaner Prod. , 87, p 255–262, 2015, doi:10.1016/ j.jclepro.2014.10.009. 16. S. Hao, et al., “Defects Inhibition and Process Optimization for Thick Plates Laser Welding with Filler Wire,” J. Manuf. Proc. , 26, p 425–432, 2017, doi:10.1016/j.jmapro.2017.03.009.

RkJQdWJsaXNoZXIy MjA4MTAy