July_August_AMP_Digital

iTSSe TSS A D V A N C E D M A T E R I A L S & P R O C E S S E S | J U L Y / A U G U S T 2 0 1 9 4 9 iTSSe TSS 9 FEATURE CONCLUSION Initial results clarify the capabili- ties and limits of RF-ICP with respect to production of WandW-Cr solid-solution armor coatings. With proper feedstock preparation, the technology is promis- ing. It can produce thick, solid, mechan- ically strong, and oxidation-resistant coatings, which are nearly impossible to deposit via traditional atmospheric thermal spray methods. ~iTSSe For more information: Jan Cizek, Insti- tute of Plasma Physics, Czech Academy ofSciences,ZaSlovankou1782/3,18200, Prague, Czech Republic, +42 0.266.052. 096, cizek@ipp.cas.cz, www.ipp.cas.cz. Acknowledgment Some resultswerepresentedat the International Thermal Spray Conference 2019 in Yokohama, Japan. Czech Science Foundation project No. 19-14339S is gratefully acknowledged. References 1. New Energy Outlook 2018, Bloom- berg NEF , https://about.bnef.com/blog/ global-electricity-demand-increase- 57-2050/. 2. J. Matejicek, Materials for Fusion Applications, Acta Polytech., Vol 53, p 197-212, 2013. 3. F. Koch and H. Bolt, Self Passiv- ating W-based Alloys as Plasma Fac- ing Material for Nuclear Fusion, Phys. Scripta, T128, p 100-105, 2007. 4. O. Kovarik, et al., The Influence of Substrate Temperature on Properties of APS and VPS W Coatings, Surf. Coat. Technol., Vol 268, p 7-14, 2015. 5. J. Matejicek, P. Chraska, and J. Lin- ke, Thermal Spray Coatings for Fusion Applications-Review, J. Therm. Spray Technol., Vol 16, p 64-83, 2007. 6. Handbook of Thermal Spray Technology (J.R. Davis, ed.), ASM International, 2004. 7. O. Kovarik, et al., Fatigue Crack Growth in Plas- ma-Sprayed Refractory Materials, J. Therm. Spray Technol., Vol 28, p 87-97, 2019. 8. J. Klecka, et al., Optimization of RF-ICP Tungsten De- posits for Plasma Facing Components, Proc. Intl. Conf. Nucle- ar Energy for New Europe, Portoroz, Slovenia, 2018.

RkJQdWJsaXNoZXIy NzM5NjA4