Feb_EDFA_Digital

edfas.org 13 ELECTRONIC DEV ICE FA I LURE ANALYSIS | VOLUME 25 NO . 1 5. B. Drevnoik, et al.: “Extending Electrical Scanning ProbeMicroscopy Measurements of Semiconductor Devices Using Microwave Impedance Microscopy,” Conference Proceedings from the 41st International Symposium for Testing and Failure Analysis, p. 82-86, 2015. 6. Wei-Shan Hu, et al.: “Device Dielectric Quality Analysis and Fault Isolation at the Contact Level by Scanning Microwave Impedance Microscopy,” Conference Proceedings from the 42nd International Symposium for Testing and Failure Analysis, p. 463-467, 2016. 7. S. Takahashi, et al.: “Decoherence in Crystals of QuantumMolecular Magnets,” Nature, 476, 76–79 (2011). 8. E.Y. Ma, et al.: “Unexpected Edge Conduction in Mercury Telluride Quantum Wells under Broken Time-reversal Symmetry,” Nature Communications, Vol. 6, p. 7252, 2016. 9. K. Lai, et al.: “Mesoscopic Percolating Resistance Network in a Strained Manganite Thin Film,” Science, 329(9), p. 190, 2010. 10. E.Y. Ma, et al.: “Mobile Metallic Domain Walls in an All-in-All-Out Magnetic Insulator,” Science, 350(6260), p. 538, 2015. conductors is now offered and in the near-term future other material properties will also be quantified. REFERENCES 1. K. Lai, et al.: “Modeling and Characterization of a Cantilever-based Near-field Scanning Microwave Impedance Microscope,” Review of Scientific Instruments, Vol. 79, p. 063703, 2008. 2. Y. Yang, et al.: “Batch-fabricated Cantilever Probes with Electrical Shielding for Nanoscale Dielectric and Conductivity Imaging,” J. Micromech. Microeng, p. 115040, 2012. 3. D.A.A. Ohlberg, et al.: “The Limits of Near Field ImmersionMicrowave Microscopy Evaluated by Imaging Bilayer GrapheneMoiré Patterns,” Nature Communications, Vol. 12, Article number: 2980 (2021). 4. R.C. Germanicus, et al.: “Mapping of Integrated PIN Diodes with a 3D Architecture by Scanning Microwave Impedance Microscopy and Dynamic Spectroscopy,” Journal of Nanotechnology, No. 11, p. 1764-1775, 2020. ABOUT THE AUTHOR Nicholas Antoniou holds a B.S. and M.S. in electrical engineering from Texas A&M University. He has over 30 years of experience in semiconductors and product management. Antoniou started his career as a process integration and yield enhancement engineer. After 10 years in the fab, he joined FEI Company (now Thermo Fisher) where he managed focused ion beam products. From there he was responsible for the FIB-SEMequipment at HarvardUniversity’s Center for Nanoscale Systems. He returned to productmanagement at NovaMeasuring Instrumentswhere hewas the productmanager of new materials metrology systems. He currently manages PrimeNano’s sMIM ScanWave product line. Antoniou is an active member of EDFAS and co-chairs the EDFAS FA Future Roadmap Council. NOTEWORTHY NEWS IPFA 2023 The 30th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) will be held in July 2023 in Penang, Malaysia. The event will be devoted to the fundamental understanding of the physical characterization techniques and associated technologies that assist in probing the nature of wearout and failure in conventional and newCMOS devices, in turn resulting in improved know-how of the physics of device, circuit, andmodule failure that serves as critical input for future design and reliability. The symposium is technically cosponsored by the IEEE Electron Device Society and IEEE Reliability Society. For more information, visit the IPFA website at ipfa-ieee.org.

RkJQdWJsaXNoZXIy MTMyMzg5NA==